1,452 research outputs found

    Towards Product Lining Model-Driven Development Code Generators

    Get PDF
    A code generator systematically transforms compact models to detailed code. Today, code generation is regarded as an integral part of model-driven development (MDD). Despite its relevance, the development of code generators is an inherently complex task and common methodologies and architectures are lacking. Additionally, reuse and extension of existing code generators only exist on individual parts. A systematic development and reuse based on a code generator product line is still in its infancy. Thus, the aim of this paper is to identify the mechanism necessary for a code generator product line by (a) analyzing the common product line development approach and (b) mapping those to a code generator specific infrastructure. As a first step towards realizing a code generator product line infrastructure, we present a component-based implementation approach based on ideas of variability-aware module systems and point out further research challenges.Comment: 6 pages, 1 figure, Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development, pp. 539-545, Angers, France, SciTePress, 201

    Proactive Quality Guidance for Model Evolution in Model Libraries

    Get PDF
    Model evolution in model libraries differs from general model evolution. It limits the scope to the manageable and allows to develop clear concepts, approaches, solutions, and methodologies. Looking at model quality in evolving model libraries, we focus on quality concerns related to reusability. In this paper, we put forward our proactive quality guidance approach for model evolution in model libraries. It uses an editing-time assessment linked to a lightweight quality model, corresponding metrics, and simplified reviews. All of which help to guide model evolution by means of quality gates fostering model reusability.Comment: 10 pages, figures. Appears in Models and Evolution Workshop Proceedings of the ACM/IEEE 16th International Conference on Model Driven Engineering Languages and Systems, Miami, Florida (USA), September 30, 201

    Mueller Matrix Microscopy for In Vivo Scar Tissue Diagnostics and Treatment Evaluation

    Get PDF
    Scars usually do not show strong contrast under standard skin examination relying on dermoscopes. They usually develop after skin injury when the body repairs the damaged tissue. In general, scars cause multiple types of distress such as movement restrictions, pain, itchiness and the psychological impact of the associated cosmetic disfigurement with no universally successful treatment option available at the moment. Scar treatment has significant economic impact as well. Mueller matrix polarimetry with integrated autofocus and automatic data registration can potentially improve scar assessment by the dermatologist and help to make the evaluation of the treatment outcome objective. Polarimetry can provide new physical parameters for an objective treatment evaluation. We show that Mueller matrix polarimetry can enable strong contrast for in vivo scar imaging. Additionally, our results indicate that the polarization stain images obtained form there could be a useful tool for dermatology. Furthermore, we demonstrate that polarimetry can be used to monitor wound healing, which may help prevent scarring altogether

    Wavefront shaping concepts for application in optical coherence tomography - a review

    Get PDF
    Optical coherence tomography (OCT) enables three-dimensional imaging with resolution on the micrometer scale. The technique relies on the time-of-flight gated detection of light scattered from a sample and has received enormous interest in applications as versatile as non-destructive testing, metrology and non-invasive medical diagnostics. However, in strongly scattering media such as biological tissue, the penetration depth and imaging resolution are limited. Combining OCT imaging with wavefront shaping approaches significantly leverages the capabilities of the technique by controlling the scattered light field through manipulation of the field incident on the sample. This article reviews the main concepts developed so far in the field and discusses the latest results achieved with a focus on signal enhancement and imaging. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Double Interferometer Design for Independent Wavefront Manipulation in Spectral Domain Optical Coherence Tomography

    Get PDF
    Spectral domain optical coherence tomography (SD-OCT) is a highly versatile method which allows for three dimensional optical imaging in scattering media. A number of recent publications demonstrated the technique to benefit from structured illumination and beam shaping approaches, e.g. to enhance the signal-to-noise ratio or the penetration depth with samples such as biological tissue. We present a compact and easy to implement design for independent wavefront manipulation and beam shaping at the reference and sample arm of the interferometric OCT device. The design requires a single spatial light modulator and can be integrated to existing free space SD-OCT systems by modifying the source arm only. We provide analytical and numerical discussion of the presented design as well as experimental data confirming the theoretical analysis. The system is highly versatile and lends itself for applications where independent phase or wavefront control is required. We demonstrate the system to be used for wavefront sensorless adaptive optics as well as for iterative optical wavefront shaping for OCT signal enhancement in strongly scattering media. © 2019, The Author(s)

    Lighting with laser diodes

    Get PDF
    Contemporary white light-emitting diodes (LEDs) are much more efficient than compact fluorescent lamps and hence are rapidly capturing the market for general illumination. LEDs are also replacing halogen lamps or even newer xenon based lamps in automotive headlamps. Because laser diodes are inherently much brighter and often more efficient than corresponding LEDs, there is great research interest in developing laser diode based illumination systems. Operating at higher current densities and with smaller form factors, laser diodes may outperform LEDs in the future. This article reviews the possibilities and challenges in the integration of visible laser diodes in future illumination systems. © 2013 Thoss Media & De Gruyter

    Maskless lithography for versatile and low cost fabrication of polymer based micro optical structures

    Get PDF
    For applications in optical communication, sensing or information projection in automotive lighting, polymer based optical devices are of keen interest. Optical structures such as waveguides and gratings are basic blocks for these devices. We report on a simple, versatile, and yet low-cost fabrication method suited for both binary and multilevel diffractive microstructures as well as multimode optical waveguides in polymers. The fabrication of the diffractive structures, i.e. gratings, with two and multiple levels, is achieved by using a maskless optical lithography system employing a spatial light modulator. With the same system, waveguide cladding structures are realized by stitching of multiple single exposure patterns. For replication of these structures on polymer, e.g. polymethyl methacrylate (PMMA), a lab-made hot embossing machine is used. We then employ UV curable material and doctor blading to realize the waveguide cores. The created diffractive and waveguide structures are characterized in terms of diffraction efficiency and optical propagation loss, respectively, showing good optical quality and performance. With our fabrication system we have demonstrated a diffraction efficiency of 71% for multilevel grating structure and a propagation loss for stitched waveguides of 2.07 dB/cm at a wavelength of 638 nm. These basic elements will be employed to realize entire optical measurement systems for applications in sensing and integrated photonics in the next step

    Self-made transparent optoacoustic detector for measurement of skin lesion thickness in vivo

    Get PDF
    In skin cancer diagnosis and treatment, one of the key factors is tumor depth, which is connected to the severity and the required excision depth. Optoacoustical (OA) imaging is a relatively popular technique that provides information based on the optical absorption of the sample. Although often demonstrated with ex vivo measurements or in vivo imaging on parts of small animals, in vivo measurements on humans are more challenging. This is presumably because it is too time consuming and the required excitation pulse energies and their number exceed the allowed maximum permissible exposure (MPE). Here, we demonstrate thickness measurements with a transparent optoacoustical detector of different suspicious skin lesions in vivo on patients. We develop the signal processing technique to automatically convert the raw signal into thickness via deconvolution with the impulse response function. The transparency of the detector allows optical excitation with the pulsed laser to be performed perpendicularly on the lesion, in contrast to the conventional illumination from the side. For validation, the measured results were compared to the histological thickness determined after excision. We show that this simple transparent detector allows to determine the thickness of a lesion and thus, aid the dermatologist to estimate the excision depth in the future
    • …
    corecore